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Abstract

In this paper, we present a novel method for generating cell complexes with anisotropy conforming to the Hessian of an arbitrary
given function. This is done by variationally optimizing the discontinuous piecewise linear approximation of the given functions
over power diagrams. The resulting cell complexes corresponding to the approximations are referred to as Optimal Power Diagram
(OPD). A hybrid optimization technique, coupling a modified Monte Carlo method with a local search strategy, is tailored for effec-
tively solving the specific optimization task. In contrast to the Optimal Voronoi Tessellation (OVT) method [1], our OPD method
does not restrict the target functions to be convex, providing more diverse classes of tessellations of the domain. Furthermore,
our OPD method generally yields smaller approximation errors than the OVT method, which uses underlaid approximants. We
conduct several experiments to demonstrate the efficacy of our optimization algorithm in finding good local minima and generating
high-quality anisotropic polytopal meshes.
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1. Introduction

Meshes are important representations used in a wide range of
applications, including geometric modeling, computer graphic-
s, mechanical engineering and simulations. The complex ge-
ometric objects are represented as an assembly of discrete el-
ements, e.g., triangles, quadrilaterals and polygons in 2D as
well as their counterparts in higher dimensions. Numerous al-
gorithms have been developed to produce high-quality isotropic
meshes, and some of them are commercially available. While
the problem of isotropic meshing has been well studied, the re-
search on converting complex objects into an anisotropic mesh
is relatively behind.

Anisotropic meshes are often advantageous in terms of com-
putational cost and solution accuracy in finite element simula-
tions for resolving physical problems with solutions changing
more rapidly in one direction than others. In shape/functional
approximation, anisotropic meshes also provide better interpo-
lations/approximations of geometries/functions having strong
directionality with fewer elements. However, many recent at-
tempts have been exclusively focused on extending isotrop-
ic meshing to anisotropic simplicial meshing and quadrilater-
al/hexahedral meshing, due to their popularity. In this paper,
we propose a novel Optimal Power Diagram (OPD) method
for generating anisotropic meshes formed by convex polygon-
s/polyhedrons. The specific contributions of this paper are as
follows:
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Figure 1: Optimal power diagrams based on discontinuous piecewise linear
approximations of different target functions: (a) f (x, y) = x2 + y2; (b) f (x, y) =

x4 + y4; and (c) f (x, y) = xy.

1. We extend the Optimal Voronoi Tessellation (OVT) energy
function that was previously used for generating anisotrop-
ic polygonal/polyhedral meshes. From the point view of
functional approximation, the OVT energy function de-
scribes the error between a convex function and its under-
laid polytope in the L1 norm. We relax the constraints for
both the approximant and the target function of the OVT
energy function. More precisely, the target function is not
necessarily convex, which is approximated by linear func-
tions individually defined over sub-regions in the L2 norm.

2. We use power diagrams to represent the tessellations of
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a given domain, so that the energy minimization problem
can be tackled efficiently. Minimizing the generalized en-
ergy boils down to finding the optimal partition of the do-
main, which is difficult in general cases. As a matter of
fact, it is NP-hard to decide if a bivariate function can be
approximated by a piecewise linear function with a pre-
specified number of facets and within an approximation
error threshold, as has been shown in [2]. To make the
problem solvable, we restrict the partitions to power dia-
grams, which have many important applications in various
fields. Actually, this is not even a restriction for cell com-
plex generation of volumes, as an arbitrarily simple cell
complex in 3D can be represented by a power diagram [3].

3. A hybrid optimization algorithm is presented to efficiently
solve the specific minimization problem in this paper. It
is very challenging to minimize the modified energy func-
tion, due to its highly non-linear and non-convex nature.
Our hybrid optimization method, combining a local search
with a global optimization technique, reduces the chance
of getting stuck at poor local minima and converges fast
to a deep enough local minimum. Moreover, a compre-
hensive initialization method is proposed to tremendously
improve the results.

The remainder of this paper is organized as follows. We re-
view the related works in Section 2 and introduce some pre-
liminary concepts and notations in Section 3. In Section 4, we
extend the OVT energy function and derive closed-form expres-
sions for its derivatives. In Section 5, we provide the overview
and technical details of our hybrid optimization method for
the minimization of the proposed energy function. Finally, af-
ter giving some experimental results and comparisons with the
OVT method in Section 6, we conclude this paper with discus-
sions and limitations in Section 7.

2. Related Work

In this section, we give a brief review of references that
are most related to this work, with a focus on methods for
anisotropic mesh generation.

Anisotropic simplicial meshing. Anisotropic simplicial
meshes are triangulations of a given domain whose elements
stretch along the desired directions. The anisotropy at each
point of the domain is usually given as a symmetric matrix.
The eigenvectors and eigenvalues of the matrix describe the de-
sired stretching directions and magnitudes of mesh elements.
Delaunay refinement is a widely used technique for generat-
ing high-quality isotropic simplicial meshes [4]. By taking
anisotropy into account, various extensions to Delaunay re-
finement have been proposed to generate anisotropic Delaunay
meshes [5, 6, 7, 8]. Anisotropic mesh quality can be measured
in different ways and optimized by combining the operations of
vertex redistribution and retriangulation [9, 10]. By embedding
the anisotropic space into a higher dimensional isotropic one,
anisotropic meshes can be obtained via constructing isotropic
meshes in the embedded space [11, 12, 13].

Anisotropic Voronoi. The concept of Centroidal Voronoi
Tessellation (CVT) has been successfully applied to high-
quality isotropic mesh generation [14]. CVTs can be gen-
eralized to anisotropic Voronoi tessellations, by using differ-
ent distance definitions [15, 16, 17, 18]. Generally, the bi-
sectors between sites are no longer straight under the gener-
alized distance measures, making the precise construction of
anisotropic Voronoi cells computationally cumbersome. Ap-
proximation methods are thus adopted to compute anisotropic
Voronoi diagrams, by clustering discrete elements of a given
mesh [19, 18, 20] or constructing restricted Voronoi diagrams
instead [16, 21]. In our method, power diagrams are used as the
representation of convex tessellations of the domain, which al-
low more flexibility than Voronoi diagrams in optimization [22]
and can be efficiently computed by off-the-shelf computational
geometry libraries.

Function approximation based methods. Anisotropic
meshes can be obtained by minimizing the approximation error
between a target function f and its piecewise linear approxi-
mation. The optimal simplices with a minimal approximation
error have been shown to be stretched along the two princi-
pal directions of f , with an aspect ratio equal to

√
|kmax/kmin|,

where kmax and kmin are the principal curvatures [23, 24]. Chen
et al. [25, 26] proposed the concept of optimal Delaunay tri-
angulation which minimizes the linear interpolation error for
a given convex function. Fu et al. [27] generalized optimal
Delaunay triangulation to anisotropic metrics by constructing
convex functions that locally match a given anisotropic metric.
The anisotropy of the resulting mesh elements conforms to the
Hessian of an input target function. A CVT can also be defined
from a variational point of view, which minimizes the error be-
tween a paraboloid f (x) = |x|2 and its underlaid piecewise lin-
ear approximation. Budninskiy et al. [1] gave an anisotropic ex-
tension of CVTs, called Optimal Voronoi Tessellations (OVTs),
which optimizes the piecewise linear approximation of convex
functions over anisotropic cell complexes. Several other meth-
ods for generating function-dependent Voronoi diagrams have
been studied in [28, 29]. In this paper, we present an extension
of OVTs based on the approximation of functions that are not
necessarily convex.

Global optimization. Due to the highly non-linear and non-
convex nature of the CVT energy, the commonly used local
search methods such as the Lloyds iteration and quasi-Newton
methods tend to get stuck at shallow local minima. Several
global techniques were developed to search a deep enough local
minimizer and even a global minimizer. For example, a Monte
Carlo-minimization (MCM) based framework [30] was adopted
to compute Euclidean CVT in [31], in which the Monte Carlo
method was used to pass from one local minimum to the next
local minimum obtained by the L-BFGS method, and ultimate-
ly to the global minimum. Similar methods were also used for
generating constrained centroidal Delaunay meshes [32] on sur-
faces and computing the optimal Delaunay triangulation in 3D
space [33]. A differential evolution based method was devel-
oped to compute the globally optimal geodesic CVT energy on
triangle meshes [34]. In this paper, we tailor the MCM method
to our specific problem and provide a comprehensive initializa-
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tion technique to speed up the convergence.

3. Background

In this section, we introduce preliminary concepts and nota-
tion that will be used throughout the entire paper.

Power diagram. Let X = {xi}
n
i=1 be a set of n distinct sites

in a compact domain Ω ⊂ Rd and W = {wi}
n
i=1 be a set of real

numbers. Each site xi is associated with a real number wi, called
the weight of xi. Then the power cell Ωi of xi is

Ωi = {x ∈ Ω | ‖x − xi‖
2 − wi ≤ ‖x − x j‖

2 − w j,∀i , j},

where ‖ · ‖ denotes the Euclidean norm. The power diagram
of the weighted point set (X,W) = {(x1,w1), ..., (xn,wn)} is the
cell complex formed by the collection of power cells {Ωi}

n
i=1.

The power diagram is a generalization of the Voronoi diagram,
which coincides with the Voronoi diagram of the sites X when
all the weights are the same [35].

Optimal Voronoi tessellations. Let f : Ω → R be a convex
function in the compact domain Ω ⊂ Rd, and X = {xi}

n
i=1 be a

set of n distinct sites in Ω. For each site xi, we denote Ti(x) the
tangent hyperplane of f (x) at xi. Then optimal Voronoi tessel-
lations [1] are minimizers of

EOVT (X,V) = ‖ f − fT ‖L1 =

n∑
i=1

∫
Vi

( f (x) − Ti(x))dx, (1)

where fT is a piecewise linear approximation of the target func-
tion f , formed by the set of tangent hyperplanes {Ti(x)}ni=1, and
V = {Vi}

n
i=1 is a tessellation of the domain. Since the function

f is convex, tangent hyperplanes Ti(x) are always below it, that
is, f (x) ≥ Ti(x) for all i. It has been shown in [1] that for a
given set of sites X, the optimal tessellationV is the projection
of the upper envelop of {Ti(x)}ni=1, which can be efficiently ob-
tained by constructing a power diagram of a set of shifted and
weighted sites {(pi,wi)}ni=1. We have

pi =
1
2
∇ f (xi), wi =

1
4
|∇ f (xi)|2 + f (xi) − ∇ f (xi) · xi.

The OVT energy function in Equation (1) can be minimized by
a Lloyd-based approach which alternately optimizes the loca-
tions of sites and updates the tessellation of the domain. Note
that for the case of f (x) = |x|2, V is simply the Voronoi tes-
sellation of X, and the OVT energy function coincides with the
centroidal Voronoi tessellation energy function [14].

4. Optimal Power Diagrams

According to [23, 24], the optimal aspect ratio of linear el-
ements is dictated by the local Hessian of a target function f ,
regardless whether f is convex or not. In this section, we de-
scribe how to modify the OVT function in Equation (1) to com-
pute anisotropic cell complexes which are cast as the optimal
piecewise linear approximations of given target functions that
are not necessarily convex.

4.1. Formulation
Suppose f : Ω → R is a real-valued function and is con-

tinuous in the compact domain Ω ⊂ Rd. Given a tessellation
V of the domain Ω, we can construct the best L2 fitting hy-
perplane of f (x) for each cell Vi, denoted by Pi(x). Then we
approximate f with a discontinuous piecewise linear function
fP(x) =

∑n
i=1 Pi(x)1Vi (x), where 1Vi is the indicator function of

a cell Vi. We formulate our energy function as follows:

E(V,P) = ‖ f − fP‖
2
L2 =

n∑
i=1

∫
Vi

( f (x) − Pi(x))2dx,

whereP = {Pi(x)}ni=1 is a set of linear functions. As the function
f is not convex and the fitting hyperplanes cannot guarantee to
be always below or above the function f , we measure the ap-
proximation error between f and fP using the L2 norm instead
of the L1 norm in the OVT function.

The determination of the best tessellation V and the corre-
sponding best-fit hyperplanes is generally NP-hard [2]. To sim-
plify the computation, we restrict the tessellation to a power
diagram, which is uniquely determined by the site positions X
and the weights W. Note that, the L2-norm best-fit hyperplane
on each cell is determined once the tessellation is given. We
denote by P∗i (x) the best linear fit on a cell Vi. Hence, the above
energy function essentially depends on the site positions and
weights as follows:

EOPD(X,W) = ‖ f − fP‖
2
L2 =

n∑
i=1

∫
Vi

( f (x) − P∗i (x))2dx. (2)

Thus we refer to minimizers of the above energy function as
Optimal Power Diagrams (OPD).

4.2. Derivatives of energy function
We now derive the gradient of our energy function for later

use. First, we consider the derivative of energy function with re-
spect to site position xi. Applying the general Leibniz rule [36]
to Equation (2), we have

∂EOPD(X,W)
∂xi

=
∑

j∈Ji∪{i}

∫
V j

∂

∂xi
| f (x) − P∗j(x)|2dx

+
∑
j∈Ji

∫
Vi j

(| f (x) − P∗i (x)|2 − | f (x) − P∗j(x)|2)
∂x
∂xi

nds,

where Ji is the indexes of sites with cells adjacent to Vi, Vi j =

∂Vi ∩ ∂V j is the common boundary of Vi and V j, and n is the
outward unit normal vector on the boundary of Vi. According
to the envelope theorem, the first term in the above equation
vanishes. Now, let us consider the evaluation of ∂x/∂xin in the
second term. Note that,

(x −
xi + x j

2
) · (x j − xi) = wi − w j, for x ∈ Vi j.

Differentiating both sides of the equation with respect to xi, we
obtain

∂x
∂xi

(x j − xi) = x − xi.
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Thus, we have ∂x/∂xin = (x − xi)/|x j − xi|. Then the derivative
of EOPD(X,W) with respect to xi can be simplified to

∂EOPD(X,W)
∂xi

=∑
j∈Ji

∫
Vi j

(| f (x) − P∗i (x)|2 − | f (x) − P∗j(x)|2)
x − xi

|x j − xi|
ds.

(3)

The derivative of EOPD(X,W) with respect to wi can be found
in the same fashion:

∂EOPD(X,W)
∂wi

=∑
j∈Ji

∫
Vi j

(| f (x) − P∗i (x)|2 − | f (x) − P∗j(x)|2)
1

2|x j − xi|
ds.

(4)

5. Optimization Algorithm

Minimizing the OPD energy function in Equation (2) is dif-
ficult, due to its highly non-linear and non-convex essence. As
shown in Figure 2, the energy function presents many shallow
local minima when we hold all variables except one site posi-
tion or weight constant. Hence, directly applying a traditional
local search method suffers from a common problem, i.e., trap-
ping in local solutions. Whereas, conventional global optimiza-
tion methods are usually very time-consuming. In this section,
a hybrid local and global optimization method is adopted to ef-
ficiently solve our OPD energy function. Before getting into
the details of our algorithm, we first provide some observations
on the optimization of the OPD energy function, which relives
the influence of variables to be optimized on the objective func-
tion and gives rise to an efficient optimization method based on
block coordinate update.

Note that, the OPD energy function in Equation (2) contain-
s two types of variables (site positions and weights). One of
the most straightforward methods for its optimization is using
a gradient-based local search with a random initialization and
without discriminating these two types of variables. As shown
in Figure 3(a), starting from a set of 1, 000 sites randomly sam-
pled from the given domain and equal weights, a gradient-based
local search method (the L-BFGS method in this paper) get-
s trapped in a shallow local minimum when we optimize al-
l variables simultaneously, yielding a low-quality tessellation;
see Figure 3(b). Meanwhile, we find that optimizing site po-
sitions before optimizing all variables usually produces much
better results, as shown in Figure 3(c). Starting from the same
random initialization in Figure 3(a) and fixing the weights in
the optimization, the L-BFGS method converges to a deeper lo-
cal minimum, leading to a tessellation with much higher qual-
ity than the result in Figure 3(b). The intermediate result in
Figure 3(c) can be further improved by applying local search
again, with all variables involved in the optimization; see Fig-
ure 3(d). More long and thin cells are introduced which better
convey the expected anisotropy. The plot of approximation er-
ror versus optimization iteration number also illustrates that this
block-coordinate-descent-like method converges to a deeper lo-
cal minimum. In other words, site positions are the most influ-
ential variables in the optimization process, while weights exert

(a) (b)
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Figure 2: Energy landscape near xi, with an input function f (x, y) = sin(π(x +

0.5)) cos(πy),−10 ≤ x, y ≤ 10. (a) All sites and weights are held constant
except the position or weight of site xi; (b) variations of the energy function
with respect to site xi; and (c) plot of approximation error with respect to weight
wi varying from −35 to 35.

a smaller influence on the minimization of the objective func-
tion. Another benefit of optimizing site positions before weight
optimization is that it reduces the chance of introducing large
differences on weights. A power diagram coupled with weight-
s varying over a wide range usually has sites locating outside
the corresponding cells, as shown in Figure 3(b), leading to a
low-quality dual regular triangulation.

5.1. Overview of OPD optimization algorithm

Global minimization of a nonconvex objective function with
many local minima is generally difficult, many efforts have been
made to speed up the computation. Among them, the Monte
Carlo-minimization (MCM) method [30], which combines the
power of an efficient local search method to find local mini-
ma and that of the Monte Carlo method in global combinatorial
optimization, is simple yet efficient to overcome the multiple-
minima problem. Roughly speaking, the MCM method consid-
ers all local minimizers obtained by interleaving perturbation
and local searching. A new local minimum is accepted if ei-
ther it is better than the current local minimum, or it satisfies a
pre-specified probability condition. Based on the above obser-
vations in Figure 3, we modify the standard MCM method to ef-
ficiently minimize the OPD energy function. As shown in Fig-
ure 4, taking a desired site number n and a target function f (x)
as input, our algorithm consists of three stages: initialization,
position optimization and position-weight optimization. Dur-
ing position optimization and position-weight optimization, the
following three steps are carried out to find the minimizer of the
OPD energy function:
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Figure 3: Influence of variables on the objective function, where f (x, y) =

100x2 + y2, −1 ≤ x, y ≤ 1. (a) Random initialization of 1,000 sites; (b)
result obtained by directly optimizing all site positions and weights, with
EOPD = 1.273 × 10−3; (c) result obtained by only optimizing site positions
from the random initialization in (a), with EOPD = 8.239 × 10−4; (d) result ob-
tained by optimizing all site positions and weights from the intermediate result
in (c), with EOPD = 6.607 × 10−4; and (e) plot of approximation error versus
iteration number, obtained by updating variables in different orders.

Step 1. Perturb the site positions or/and weights by using
specific perturbation strategies. Denote the perturbed sites
and weights by X′ and W ′, respectively.

Step 2. Optimize the site positions X′ or/and weights W ′ si-
multaneously using the L-BFGS method, upon which the
approximation error EOPD(X′,W ′) can be computed.

Step 3. If EOPD(X′,W ′) < EOPD(X,W), we accept new site
positions and weights, i.e., X ← X′ and W ← W ′. Oth-
erwise, if EOPD(X′,W ′) > EOPD(X,W) in successive three
times of perturbation and optimization, stop.

Note that, site positions are more important in the optimization
of the OPD energy function, as we have observed previously.
We can have an expectation that optimizing site positions thor-
oughly before optimizing all variables together will significant-

LocalPerturb(X)Insert sites L-BFGS(X)

L-BFGS(X, W)

Initialization

Output: Convex polygonal 
meshing of Ω and fL

GlobalPertrub(X)
& LocalPerturb(X, W)

GlobalPerturb(X) 
&LocalPerturb(X) L-BFGS(X)

Position Optimization

Position-Weight Optimization

Input: Target function  f     
over a domain Ω;
Site number n;
Patch number m;

Repeat N times

Repeat m times

Repeat M times

Figure 4: Overview of our OPD optimization algorithm.

ly speed up the convergence. Hence, our optimization algorith-
m is applied twice: the first time we only optimize site position-
s (position optimization) and the second time we optimize all
variables to achieve a deeper local minimum (position-weight
optimization). Details of the algorithm will be given in the rest
of this section.

5.2. Initialization

Providing a good initial guess is critical for optimization to
find a deep local minimum. Here, we generate an initial guess
that is close to an optimal solution, which will considerably
speed up the iteration progress.

Our initialization algorithm holds all the weights constan-
t and takes a target f (x), the desired site number n and a batch
number m as input. We start with a small number of sites,
and then add more sites adaptively in each subsequent itera-
tion, guided by approximation errors, so that the approximation
quality is improved progressively. The initialization phase con-
sists of the following steps:

Step 1. The first batch of n/m sites, randomly sampled for the
given domain Ω, are optimized using the L-BFGS method.
Then, the approximation error on each cell of the tessella-
tion can be computed.

Step 2. The n/m cells with the largest approximation errors
are selected, with one new site inserted into each of them.
In particular, we compute the principal axes of each se-
lected cell using principal component analysis (PCA), and
a new site is added next to the current site along the direc-
tion of the short axis. This new site placement operation is
called site insertion in the following sections.
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(a) (b)

(c) (d)

Figure 5: Comparison of new site insertion methods with different initializa-
tions. (a) and (c) are results using a random insertion method for new sites;
and (b) and (d) are results using the PCA based new site insertion method. Top
row: f (x, y) = 100x2 + y2,−1 ≤ x, y ≤ 1, with EOPD = 4.124 × 10−4 (a) and
EOPD = 8.492 × 10−5 (b). Bottom row: f (x, y) = x2 + y2,−1 ≤ x, y ≤ 1, with
EOPD = 6.044 × 10−7 (c) and EOPD = 6.095 × 10−7 (d).

Step 3. To escape from the current local minimum and find
another possibly better local minimum, each site xi is per-
turbed by a small amount in an arbitrary direction:

x′i = xi + λliv

where li is the length of the short axis of the correspond-
ing cell Vi, λ is a factor used to adjust the magnitude of
the perturbation, and v is a random vector within a unit
2D disk or 3D sphere. Hereinafter, this perturbation oper-
ation is referred to as local perturbation. Then, all the site
positions are optimized by the L-BFGS method.

Step 4. If all batches of sites are added, stop; otherwise, up-
date the approximation error on each cell and go back to
Step 2.

Note that, as an initialization for a new round of local search
in Step 3, the positions of newly added sites in Step 2 is of
critical importance. Similar to previous observations, a random
placement of newly added site at each selected cell would also
lead to unsatisfying results. Examples are shown in Figure 5.
By randomly placing a new site at each selected cell, our initial-
ization algorithm results in shallow local minimizers, especially
when the input target function shows strong anisotropic prop-
erty, see Figure 5(a). Whereas, adding new sites at short axes
gives a better anisotropic approximation to the input function,
and leads to a much deeper local minimizer, see Figure 5(b).
This site insertion method does no harm for the isotropic case,
see Figures 5(d), which generates similar results to the random
insertion method in Figure 5(c).

(a) (b)

Figure 6: Influence of global perturbation on site position optimization. (a)
Result using only local perturbation, EOPD = 7.396× 10−5; and (b) result using
both global and local perturbations, EOPD = 7.115 × 10−5.

It is also worth pointing out that it is hard to determine the
right number of batches such that the approximation can reach
the best quality. Generally speaking, having fewer sites insert-
ed in each step needs more iteration steps, leading to slower
approximation and smaller approximation error. While hav-
ing more newly-inserted sites in each approximation step needs
fewer iteration steps, but may result in larger approximation er-
ror. The worst case is adding all sites at once, as shown in
Figure 3(c), which results in a much shallower local minimum
than the result obtained by adding new sites in batches in Fig-
ure 5(b). Empirically, we insert n sites by 20 batches, which
reaches a good balance between computation time and approx-
imation quality.

5.3. Perturbation

The results of our comprehensive initialization can be fur-
ther improved by the aforementioned MCM global optimization
which involves perturbation and local searching.

Position perturbation. The proposed perturbation strategy
sequentially applies two types of perturbations: global pertur-
bation and local perturbation. In global perturbation, 1% of
the sites whose cells have the smallest approximation errors are
removed. In compensation, each of 1% of the cells with the
largest approximation errors is split by adding a new site, using
the site insertion operation in Step 2 of Section 5.2. In local per-
turbation, each site is perturbed as Step 3 of Section 5.2. Note
that, the factor λ plays an important role in adjusting the pertur-
bation magnitude. Too small λmay lead to a failure of escaping
from the current local minimizer. Whereas, too large λ would
amount to re-starting the optimization from a random initializa-
tion. Empirically, λ is set to be 0.2 in all our experiments. As
can be observed in Figure 6(b), our global optimization method
helps find a deeper local minimum, benefiting from the pertur-
bations. It is also worth pointing out that, it is the cooperative
effect between global and local perturbations that allows our al-
gorithm to reach deep local minima. As shown in Figure 6, the
local minimum obtained by solely using local perturbation is
shallower than the local minimum obtained by using both glob-
al and local perturbations in position optimization.

Weight perturbation. In the position-weight optimization,
weights provide additional degrees of freedoms and allow a bet-
ter approximation to the given function. After adding perturba-
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(a) (b)

Figure 7: f (x, y) = x4 + y4 + (x − 3)2 + (y − 3)2,−10 ≤ x, y ≤ 10 with 2,000
sites. (a) Result after position optimization; and (b) result of position-weight
optimization, taking the tessellation in (a) as input.

tion to sites, a local perturbation is also added to each weight.
In particular, each weight wi is randomly perturbed by a mag-
nitude less than βli, where li is defined in Step 3 of Section 5.2
and β is an adjustable factor empirically chosen as β = 0.1. Re-
sults in Figure 7 indicate that the approximation result obtained
from position optimization is further improved in the following
position-weight optimization, as more degrees of freedom are
exploited to control the local anisotropy.

5.4. Terminating condition
In our modified MCM method, a deep local minimum is

found in a more aggressive way, i.e., a worse local minimum
is always rejected, instead of accepting it according to a prob-
ability in the original MCM method. Our algorithm termi-
nates when it fails to decrease the energy after successive three
times of perturbation or reaches a pre-defined maximum iter-
ation number. Benefiting from the delicate initialization, our
method usually achieves satisfying results within 20 iterations
of position optimization and 5 iterations of position-weight op-
timization. Thus, in all our experiments (except the experiment
shown in Figure 3), the maximum iteration numbers of position
optimization and position-weight optimization are set to 20 and
5, respectively.

6. Results

In this section, we present several experimental results to
demonstrate the effectiveness of our OPD method and compare
it with the OVT method. Voronoi cells restricted to a given do-
main are computed using an efficient clipping method proposed
in [37]. All the experiments were performed on a machine with
a 3.3 GHz Intel Xeon processor and 12 GB RAM.

Non-convex function approximation. We first conduc-
t our algorithm on several non-convex functions in the 2D case
to demonstrate the capability of our algorithm in generating
anisotropic tessellations. Anisotropy described by the Hessian
of the given non-convex functions may change greatly from re-
gion to region. The experimental results shown in Figures 1(c),
8, 9 and 12 indicate that the generated tessellations well capture
the expected anisotropic variations.

Density control. By adding a non-negative scalar function
to modulate the L2 norm in the OPD energy function (2), our

(a) (b)

Figure 8: Resulting tessellation (a) and piecewise linear fit (b) of a non-convex
target function f (x, y) = sin(π(x + 0.5)) cos(πy), x2 + y2 ≤ 1 with 500 sites.

(a) (b)

Figure 9: Density control. Resulting tessellations for a non-convex target func-
tion f (x, y) = x3 + y3,−1 ≤ x, y ≤ 1 with a constant density in (a) and a
nonuniform density function ρ(x, y) = 1.0/

(
(x2 + y2)2 + 0.001

)
in (b).

method is capable of generating anisotropic mesh with density
adapting to the scalar function. In particular, we compute the
minimizer of the modified energy function

EOPD(X,W) =

n∑
i=1

∫
Vi

ρ(x)( f (x) − P∗i (x))2dx, (5)

whose derivative can be derived in the same manner as Equation
(2). Figure 9 shows that the generated meshes adapt to both the
predicted anisotropy and density.

3D results. Our algorithm is naturally applicable for 3D
mesh generation and provides the same control over anisotropy
and density. Figure 10 shows an example of anisotropic mesh-
ing on a simple spherical domain, and the cutaway views show
that the cells precisely get aligned to the expected anisotropy.
In Figure 11, our method generates a sequence of meshes from
isotropic mesh to anisotropic meshes (with aspect ratios being
1, 2 and 8, respectively) on a geometric model. The cutaway
views show that the aspect ratio of cells are effectively con-
trolled by the input function. In Figure 12, a cube model is
decomposed to cells with spatially-varying anisotropy and den-
sity. Once again, the predicted anisotropy and density are well
captured, as can be observed in exterior and cutaway views.

Comparison with the OVT method. We evaluate our OPD
method via a comparison with the OVT method [1]. Three mea-
sures of the cells Vi, including the Hessian variation, shape ratio
and modified area, are adopted here to evaluate the mesh quality
as follows:
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Figure 10: Tessellation of sphere for a non-smooth target function f (x, y, z) =√
x2 + y2 + z2 with 800 sites.

(a) (b) (c)

Figure 11: 3D optimal power diagrams with increasing anisotropy. (a) Isotrop-
ic; (b) 2:1:1; and (c) 8:1:1.

(a) Hessian variation: max
x,y∈Vi

‖Hess[ f ](x) − Hess[ f ](y)‖F ,

where Hess[ f ](x) is the Hessian of function f (x) and ‖.‖F
is the Frobenius norm.

(b) Shape ratio: max
x,y∈Vi

[√
(x − y)tHVi (x − y)

] [
|Vi|

√
det HVi

]− 1
d

,

where HVi is the averaged Hessian of f within a cell Vi.

(c) Modified area:
(
ρd

Vi
det HVi

) 1
d+2
|Vi|, where d = 2, 3, and ρVi

is the average density within a cell Vi.

Generally speaking, the cells of a high-quality tessellation have
similar Hessian variations, shape ratios and areas. Figures 13-
15 show a comparison of our OPD method with the OVT
method on generating meshes conforming to anisotropic met-
rics induced by 2D/3D convex functions. From the tessellation
results, we can observe that our OPD method produces meshes
with visually more regular cells. Histograms display the dis-
tributions of the three aforementioned measures on each result-
ing mesh, which indicate that our OPD method achieves a bet-
ter performance than the OVT method. Histograms of Hessian
variations in Figures 13 and 15 are not given as the Hessian is
constant on each cell. The color-coded approximation errors in
both L1 and L2 norms also reveal that our OPD method provides
better approximation to the given functions.

7. Conclusion

We present a cell complex generation framework using OPD,
achieving tessellations with well controlled local anisotropy

Figure 12: Exterior and cutaway views of tessellations for a non-convex target
function f (x, y, z) = x3 + y3 + z3,−1 ≤ x, y, z ≤ 1 with a constant density in (a)
and a nonuniform density function ρ(x, y, z) = 1.0/

(
(x2 + y2 + z2)2 + 0.001

)
in

(b).

Table 1: Statistics of Running Time.

and density. Our OPD method extends the existing OVT
method by removing the convex restriction on the approximat-
ed function and replacing tangent planes with general planes
as approximants. A combined local-global optimization tech-
nique, coupled with comprehensive initialization and perturba-
tion schemes, is tailored for solving the specific optimization
problem. Experimental results demonstrate that our method is
capable of generating more diverse tessellations with expected
density and anisotropy and providing a better approximation to
the given function than the OVT method.

Limitation and future work. In practical applications, one
may desire to generate meshes adapted to a given tensor field.
However, an arbitrarily prescribed tensor field is not the Hes-
sian of any function in general. Hence, the aforementioned
anisotropic technique cannot be directly used for this situation.
One promising solution is to find a function whose Hessian pro-
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 13: Comparison of our OPD method with the OVT method on a convex
function with a constant Hessian f (x, y) = 100x2 + y2,−1 ≤ x, y ≤ 1. (a-c)
Results from the OVT method; (d-f)results from our OPD method; and (g-h)
histograms of shape ratios and modified areas. (a, d) Resulting tessellations;
(b, e) color-coded errors in the L1 norm; and (c, f) color-coded errors in the L2

norm.

vides the best fit to the prescribed anisotropy using a fitting
method. Compared with the optimization method of comput-
ing OVT, our hybrid optimization often suffers from the high
computational cost, despite of successes in finding optimal lo-
cal minima. The running time of our OPD method for each
example is given in Table 1. As part of our future work, we will
focus on speeding up the optimization.

Although in this paper we only focus our research endeav-
ors on generating anisotropic cell complexes for function ap-
proximation, potential applications of cell complex generation
are much broader. For example, shape functions defined over
polygonal/polyhedral elements are often desirable in finite el-
ement analysis and isogeometry analysis. We plan to further
refine our algorithm by integrating more constraints on the ge-
ometry shape of cells and apply it to analysis and simulation
tasks.
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[37] D.-M. Yan, W. Wang, B. Lévy, Y. Liu, Efficient computation of 3D
clipped Voronoi diagram, in: International Conference on Geometric
Modeling and Processing, Springer, 2010, pp. 269–282.

10


